

A Belcanto
Cookbook

Recipes for configuring
the Eigenharp

edited by

Ian Clark

Undead Tree Publications
9 Normanby Terrace, Flat 1, Whitby, YO21 3ES, England.

www.undeadtree.com

First Edition, May 2013.

All Rights Reserved.

Copyright © Ian Clark, 2013.

The right of Ian Clark to be identified as author of this work has been asserted
in accordance with Section 77 of the Copyright, Designs and Patents Act 1988.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior written consent of the publisher or a
licence permitting copying in the UK issued by the Copyright Licensing Agency
Ltd, 90 Tottenham Court Road, London W1P 9HE.

ISBN 978-1-898728-28-3

9 8 7 6 5 4 3 2

Foreword

The Eigenharp represents a new generation of expressive musical instru-
ment which you could describe as “on beyond MIDI”.

The Eigenharp is properly termed a “controller”, i.e. an input device
which doesn’t generate musical sounds by itself, but sends signals to
software running on a computer which does. The sound-producing
software for the Eigenharp is called EigenD, which (at the time of writing)
is in the process of becoming open-source.

EigenD is a collection of components, called agents, which govern
specialized functions, such as sound generation, key assignment and the
user interface to the instrument, whether computer or keyboard. In a
sense, EigenD consists of nothing but agents. Third-party software
developers can write agents, and are encouraged to do so.

One noteworthy agent is the Belcanto Interpreter. This implements a
specialized configuration language called Belcanto, having these design
goals:

• Can configure the Eigenharp in all its aspects.
• Can be entered from the Eigenharp keyboard as a sequence of

musical notes.
• Can also be written down and executed as an ASCII script.
• Can be understood by a musician without programmer

training.
Belcanto has evolved considerably in its first decade of life. It depends
for its form and structure on the individual agents which it configures.
Since these agents have been written by different people following a loose
set of guidelines, Belcanto is not like other computer languages that have
been designed as an integrated whole. So the definitive Belcanto
reference manual may never be written. This has led to a gap in
instructional material which this book tries to fill.

This Cookbook is not a formal treatment of Belcanto as if it were yet
another programming language. It is addressed to musicians, not pro-
grammers. It is not a user guide, nor a primer, nor a reference manual: it
is a collection of Belcanto recipes contributed by different musicians, or
more generally, a collection of tricks and techniques for configuring the
Eigenharp. You can use it, in conjunction with the vendor’s own docu-
mentation, to bend the Eigenharp to your will. It is a starting point for
your own experiments. We have, however, tried to add sufficient explan-
ation for you to start using it, even if you know virtually no Belcanto.

4

If you are non-technical, there is a glossary of technical terms at the
back (Appendix A). There is also a reference list of selected Belcanto
words (Appendix B). We haven’t covered them all (there are over 700)
but just the main ones which won’t be obvious to the beginner. Thus a
Belcanto word like octave requires no explanation to a musician,
whereas ify and un might well do so.

A “cookbook” could so easily be a mere rag-bag of recipes, with no
threads to pull different themes together. We’ve tried to avoid this by
imposing a common structure on the recipes we’ve got from various
sources. General principles are explained where appropriate, and some
cross-referencing has been attempted.

The aim of all this has been to help you browse the recipes with some
special task in mind: some problem of your own to solve. But do bear in
mind that the structure of this cookbook arises out of the recipes we’ve
been offered, not the other way round. This is the opposite to a typical
manual for a programming language, in which examples would be chosen
to fit the way the author wants to expound the principles.

Doing it our way means that our recipes are more likely to be useful
to you straightaway than the abstract examples you’d see in a formal exp-
osition. There is a down-side however. When you come to adapt a recipe,
you may need to play around a bit to find out what works and what
doesn’t. Where Belcanto is concerned, it’s hard to do anything else. A
Belcanto phrase is highly context-dependent: it depends on the setup you’re
starting with, the instrument you’re using (Alpha, Tau or Pico), and
whatever other Belcanto has preceded it.

None of the recipes can be guaranteed, alas. But all of them have been
verified to work, if only with the stated setup, Eigenharp model and level
of EigenD (2.0.74 at the time of writing). Unless explicitly stated, each
recipe is for the Pico, but can be adapted to other models with the applic-
ation of some creativity.

Ian Clark
Whitby, 2013

Acknowledgements

Grateful thanks to all reviewers, and to all contributors of code and
explanations, in particular Geert Bevin, Duncan Foster, Mark Harris,
António Machado, Mike Milton, Torsten Anders and Jim Self, to
mention only a few, and not in any particular order.

Contents

Foreword... 3
Acknowledgements... 5
1 Getting started with Belcanto ... 9

1.1 To get ready to run the examples in this chapter 9
1.2 A useful test expression in Belcanto 9
1.3 The different ways of executing Belcanto code 10
1.4 To type Belcanto into Eig enCommander 10
1.5 To verify you do actually have version 2.0.74 running 11
1.6 To verify you do actually have version 2.0.74 in sta ll ed 12
1.7 To create and execute a Belcanto script 13
1.8 To pick a valid name for a given Belcanto script 14

2 Building and using setups ...17
2.1 To load a given factory setup 17
2.2 To save the current setup under a new name 17
2.3 To load a given saved setup 19
2.4 To save a given setup plus the result of running a given script 19
2.5 To pick a valid name for a setup 19

3 Setting and adjusting scales...21
3.1 To alter the octave buttons to transpose by a tritone 21
3.2 To transpose by some other interval than a tritone 21
3.3 To restore the octave buttons’ original behavior 22

4 Mapping the keys...23
4.1 To make main keygroup play music on all 18 keys 23
4.2 To silence the last 2 keys of main keygroup 24
4.3 To restore the original mapping of main keygroup 25
4.4 To zigzag the keys in main keygroup 26
4.5 To set a given block of keys to your own custom scale 27
4.6 To find the interval to use in your own custom scale 27
4.7 To reverse the note sequence of the chromatic scale 28

5 Setting the lights on buttons and keys...31
5.1 To color the octave-down button green 31
5.2 To toggle the action of the octave-down button 31

7

5.3 To set the tonic keys of cello rig 1 to green 32
5.4 To make the metronome button flash with the beat 33

6 Creating talkers and setting their actions..35
6.1 To see the Belcanto in octave talker 35
6.2 To create a talker named test talker 35
6.3 To make test talker talk a Belcanto phrase 35
6.4 To recompile the actions in test talker 36

7 Filtering audio and recording sounds ...39
7.1 To record the sound produced by the Eigenharp 39
7.2 To silence and restore the audio signal 39
7.3 To coarsen or refine the sound recording 39
7.4 To calculate the expected size of a sound recording 40

Appendix A: Glossary of technical terms ... 41
Appendix B: Selected Language Reference 51

1 Getting started with Belcanto

1.1 To get ready to run the examples in this chapter
Before you run the examples in this chapter, do the following:

• Launch EigenD from the Apple® Macintosh™ Dock.
• Load factory setup pico 1, the Pico Standard setup

Factory Setups > pico > 1 (Standard Setup)

• Plug your Eigenharp into a USB port.
• Launch EigenBrowser from the EigenD menubar

Menu: Tools > EigenBrowser ⌘B
• Launch EigenCommander from the EigenD menubar

Menu: Tools > EigenCommander ⌘C

1.2 A useful test expression in Belcanto
You'll find the following Belcanto phrase useful as a general-purpose test
when experimenting with scripts and talkers.

To start/stop the metronome:

metronome hey toggle start

This provides instant audible feedback of successful execution, it will
work in any setup where the agent: metronome is present, and it doesn’t
require the Eigenharp to be attached.

The agent: metronome doesn’t just control the metronome tick, but
starts and stops percussion loops too.

Note that the above phrase can be split over two lines, like this:

metronome hey
toggle start

Conversely any block of Belcanto phrases can be run together into a
single phrase all on one line. In other words, the Belcanto interpreter
ignores ends of lines, tabs, etc (collectively called whitespace).

10

1.3 The different ways of executing Belcanto code
The main ways of composing and executing Belcanto code are:

• Typing into EigenCommander.
• Creating and running a script.
• Playing on the Eigenharp keys themselves.
• Inserting into the action field(s) of a given talker (using either

EigenCommander or Workbench).
• Executing as a Unix expression using command: brpc.

The first two ways are the ones we shall be mainly concerned with.

1.4 To type Belcanto into EigenCommander
This is the recommended way of composing and debugging Belcanto
expressions before using them elsewhere, e.g. in a script or in Workbench.
It is far from being the most convenient way of handling Belcanto
expressions (the user interface is idiosyncratic and does not conform to
Apple® standards) but it analyses input into phrases, reports errors and
makes a guess at why an error has occurred.

Launch EigenCommander: Menu > Tools > EigenCommander ⌘C

You see a 3-pane screen, the lower 2 panes looking like this:

>_ shows the point where you start typing.

Get in the habit of clicking this pane before typing. Unlike most Mac-
intosh software, the appearance of EigenCommander does not change
when it is deselected, so often nothing happens when you type (or else
the typing appears in the wrong window).

Type: metronome hey start and press Enter.
The sound of percussion should start.
Type: metronome hey stop and press Enter.
The sound of percussion should stop.
The lower 2 panes should now look like this:

11

Note that acknowledgement messages have appeared in the right-hand pane.
If the phrase failed, the message is in red.

ASIDE: a quick way of repeating a phrase in slightly different form is to
press the up-arrow on the keyboard (repeatedly), to make previous line(s)
appear, then to backspace out the word: start (say) and then type: stop.

1.5 To verify you do actually have version 2.0.74 running
This is something you’ll only need to do if you’re troubleshooting a
recipe.

However you’ll be troubleshooting a lot when experimenting with Belcanto, so it’s wise
to do it once, now, so you know how to do it when you need to.

Once EigenD has been installed, you’ll see not one but two entries in the
folder: /Applications/ viz. EigenD.app and a folder: /Eigenlabs/.
In normal operation, you’d drag’n’drop the first item, EigenD.app,
down onto the Dock, which ensures that this precise copy of the app is
what gets launched when the Dock icon is clicked.

Let’s open /Eigenlabs/ and, inside it, the folder: /2.0.74-stable/
(called the version folder):

Inside, you can see another EigenD.app !! What’s going on?

12

There happens to be an EigenD.app in every version folder. These
enable you to run any version of EigenD you’ve got installed. However
each time you install a new version of EigenD, say 2.0.74, the
EigenD.app residing directly in /Applications/ is replaced with a
copy of /Applications/Eigenlabs/2.0.74-stable/EigenD.app.
This ensures that when you upgrade EigenD, it’s the latest version that
gets launched by Dock without you having to do anything special, like pouf
the old Dock icon and find the correct new app to drag’n’drop into Dock.

However, this is exactly what some people do, with the result they can
unwittingly be running the wrong version of EigenD.

That’s the reason for this recipe, and the next one.
Click the EigenD icon in Dock to make sure the correct menubar is

showing. Then choose menu: File > About eigend

This is a weird place for it, and easy to miss. You’d expect to find the About window either
at menu: Help > About EigenD... or at menu: EigenD > About EigenD...

If you don’t see this window, confirming that 2.0.74-stable is the
version that’s running, then either check it is installed (see 1.6) and launch
it, or be prepared to adapt the recipes to the version you’re running.

Typically this means replacing 2.0.74 or 2.0.74-stable wherever you see it with
the version number you actually see in the About window.

1.6 To verify you do actually have version 2.0.74 ins tal l ed
Click the EigenD icon in Dock to make sure the correct menubar is
showing. Then choose menu: File > About eigend

With Mountain Lion (OS X 10.8), Apple® have taken the “helpful”
decision to hide the folder: /Users/yourname/Library/. This makes it

13

needlessly hard to navigate in Finder to the folder: /Eigenlabs/
contained within /Library/. However EigenD has a tool to do precisely
that (though you might not guess it from its name):

Menu: Tools > Open Library Directory
This shows you a list of folders, one for each version of EigenD installed.

Ignore the colors on the file items: the user has set these for his own convenience.

This serves to confirm that the folder: /2.0.74-stable/ is actually
present. It also shows you a list of other working folders, with names like
/Audio/, /Setups/, etc., that are version-dependent. We have opened
/2.0.74-stable/ and navigated to the folder: /Audio/ to reveal the
file: audio.wav it can contain. You will need this task for recipe 7.1.

1.7 To create and execute a Belcanto script
Create a text-only file using your preferred method (e.g. Apple® TextEdit,
or Windows™ NotePad) containing this text:

name
 test name
description
 This section describes what the script does,
 viz it starts/stops the metronome.
script
 metronome hey
 toggle start

and save it as mytest.txt in the folder:
/Users/yourname/Library/Eigenlabs/Scripts/

The filename does not matter. The Belcanto Interpreter uses the name inside the script, viz.
test name.

14

Now run your new script by repeatedly executing this Belcanto phrase:

e.g. by typing it into EigenCommander:

interpreter 1 hey test name execute

EXPLANATION: a Belcanto script is a vehicle for delivering Belcanto
code for any purpose you like. It is a text-only file. Such files typically have
the extension: .txt but a script can have any extension. It must contain
ASCII characters only (no Unicode or utf-8). It must reside in the
/Eigenlabs/Scripts/ folder.

A script has a header and a script section. The header describes what it
does. This is mandatory, even though it is not executed by the Belcanto
interpreter. It starts with the word: name or description and finishes
with the word script. Unlike Belcanto itself, whitespace does matter in
the header. In particular, each of the section titles: name, description
and script needs a line to itself.

The name section is needed if you want to execute the script using
Belcanto. The name must be a valid Belcanto noun (the filename won’t
do). The name section may be placed above or below description. Or
it can be omitted, like this:

description
 This section describes what the script does,
 viz it starts/stops the metronome.
script
 metronome hey
 toggle start

You can select and execute a script by using EigenBrowser. In factory setup
pico 1 there is a key: Browse Scripts in 4. Instrument / FX Control. This
shows a list of scripts, which you can select (“arm”) and then execute.

1.8 To pick a valid name for a given Belcanto script
A script name must be a Belcanto noun. It may consist of one or more
Belcanto words, including numbers. Take care to avoid the words set, to,
from... or any other which might trick the Belcanto Interpreter into
thinking the name has ended prematurely. If a given name doesn’t work,
this may be the reason, so pick a safe one. Numbers are safe.

Examples of a suitable name:

punk
12345

15

04 script
test name
acid attack 999

Here is a list of Belcanto words ≤5 chars long, from which words can be
chosen for a name:

acid add again agent amber angle as at attack audio auto
axis back band bank bar base basic bass beat bend blank
blink blow blue blues bongo bow bus by cant chop chord
clear clip close copy cubic curve cutoff cycle dance
delay decal disco do dont down drum dry dub empty end eq
event fade find fix flash folk foot for funk gain gate
get gray green grey group gypsy hard harp help hey hi
hold host id ify image in into isnt it iyot jazz join key
label latch latin layer left light limit list load loft
logo loop low lurk m map marva metal meter micro mid midi
minor mix mixer mode mono move mute name next noise none
note notea notes noun of off on once open organ pa pad
page pan part pass pb pd pe pedal pelog pfcg piano pico
pitch play pop port power pulse punk quote range rap rate
re red re reset rest retro rig rock roll root row run
salsa save sax say scale scan scope send setup show sine
size ska soft song soul staff start step stop strip strum
super swing switch synth table tail take tango tap taps
tau test text time tin tone tonic top treble tree tune
type ultra un undo unit until up use user using verb view
viola vocal voice vu wait wet when which whole width with
word yaw

2 Building and using setups

When you launch EigenD, it shows you a list of the setups it knows about,
in a treeview window. This is a standard type of Mac window which lets
you click a box containing a +-sign to expand that row as the branch of a
tree. At the “leaves” of the tree are the names of the setups you can
choose to load.

Two factory setups of prime importance to the Pico owner are pico 1 (the
so-called Pico Standard Setup) and blank. Both can serve as the basis for
building your own setups.

2.1 To load a given factory setup
This ought to work, but doesn’t (under 2.0.74):

pico 1 load

A workaround is to load factory setup pico 1 using the EigenD main
window, then save it as a user setup with the name unchanged. Then the
above Belcanto phrase will work.

2.2 To save the current setup under a new name
Let’s make a small change to pico 1 and save it under a new name.

An easy change to make to the setup is to use the Key Control (as explained in the Pico
Quick Reference Guide, which comes with the instrument) to change the key to D.

Click the button: Save As
EigenD invites you to save the setup under a name it generates for you,

viz. user 1 (...numbered all the way up to user 9)

18

On the face of it, this seems to limit us to only 9 user setups!
However we don’t have to use the Belcanto word: user as part of our setup name.
So in fact we can save a virtually unlimited number of user setups.

Click the option: Belcanto Name as Words: and replace the word: user
with another choice of Belcanto word, or words, e.g. gothic flash

Pick words from the list displayed by EigenCommander.

Click the button: Save

Notice how the EigenD treeview now looks...
There is now a new branch: gothic with a sub-branch: flash

19

2.3 To load a given saved setup
To load a choice of setup, (e.g. the one you created above, named: gothic
flash 1), execute the Belcanto phrase (e.g. by typing it into
EigenCommander):

gothic flash 1 load

To reload the factory setup pico 1, execute the Belcanto phrase:

pico 1 load

For this to work, you might find you need to load factory setup pico 1 and save it again,
thus making a copy that is now a user setup.

2.4 To save a given setup plus the result of running a
given script
After you’ve run the script, either click the button: Save in EigenD or, if
you want to keep both the before- and after- setups, follow recipe 2.2.

The point to emphasize is: once you run a script, it becomes part of
the setup. This, once saved, can be reliably reloaded.

If you have a collection of scripts which modify a given setup,
consider saving the result of running each script as a separate setup. Find
whatever works for you (a) as a setup developer, (b) as a performer.
Keeping a collection of mix’n’match scripts favors (a), assembling a
collection of tried-and-tested setups for your gig favors (b).

2.5 To pick a valid name for a setup
A setup name must be a Belcanto noun. The same rules apply as for
naming a script. See recipe 1.8.

3 Setting and adjusting scales

3.1 To alter the octave buttons to transpose by a tritone
In the factory setup pico 1, the two octave buttons transpose the current
scale up by one octave, and back down again.

Here’s a script to alter the octave buttons to transpose up instead by a
tritone (or diminished fifth), and back down again:

description
 Make the Pico octave buttons transpose
 the key up/down by a tritone instead.
 [after: eigenlabs.com]

script
 octave talker hey 1 called 1 cancel
 octave talker hey 2 called 1 cancel
 octave talker hey
 " main keygroup hey octave by 0.5 down "
 when 1 called 1 do
 octave talker hey
 " main keygroup hey octave by 0.5 up "
 when 2 called 1 do

3.2 To transpose by some other interval than a tritone
The tritone may not be your favorite choice of transposition. But it has a
nice simple octave factor, viz. 0.5. Also, as you’ll find out when trying out
the script, it’s the handiest for remembering which key you’re in. Press the
button twice and you’re back to the original tonic note, except it’s now
an octave higher (or lower).

You can alter the script of 3.1 to make it transpose by a different
interval. Just replace the octave factor 0.5 (in both places) by:

Two octaves: 2
One octave: 1 (restores the octave buttons’ original behavior)
Major 7th: 0.91666666666666663
Minor 7th: 0.83333333333333337
Major 6th: 0.75
Minor 6th: 0.66666666666666663
Perfect 5th: 0.583333333333333333
Tritone: 0.5
Perfect 4th: 0.416666666666666667
Major 3rd: 0.33333333333333331
Minor 3rd: 0.25

22

Major 2nd: 0.16666666666666666
Minor 2nd: 0.083333333333333329

3.3 To restore the octave buttons’ original behavior
You can restore the octave buttons’ original behavior following a
transposition using recipe 3.1 by setting the octave factor to 1 in 3.1.

Or you can omit the octave factor altogether. Thus in 3.1, replace:

 " main keygroup hey octave by 0.5 down "

 " main keygroup hey octave by 0.5 up "

by:

 " main keygroup hey octave down "

 " main keygroup hey octave up "

4 Mapping the keys

There are two kinds of mapping used by the keygroup agent to define the
note a given key plays, or the action a given key does (i.e. what Belcanto it
talks when pressed):

• physical mapping: defines a block of keys on the physical keyboard,
• musical mapping: defines how notes are allocated within the block.

The agent main keygroup in factory setup pico 1 treats all 18 keys as a
single block, from which both music keys and action keys are allocated.
When modifying pico 1 to experiment with different key arrangements
it’s best not to interfere with this overall block, which means leaving the
physical mapping unaltered, and altering only the musical mapping.

The Pico’s physical keys are identified by their row and column thus:

The four round buttons are honorary “keys” too, and reside in a notional
Column 3. Calling them by their usage in pico 1, their row numbers are:

1 Metronome
2 Mode
3 Octave down
4 Octave up

The physical mapping refers to keys by: [column, row]. But the
musical mapping refers to keys by their ID number, preceded by their
“course number”, which in pico 1 is always 1. Thus: [course, key].
Therefore in the following recipes, which only set the musical mapping,
always read: [1,3] as the ID number: 3. NOT as: row 3 in: column 1.

4.1 To make main keygroup play music on all 18 keys

main keygroup hey
musical mapping to " [] " set

This is functionally equivalent to:

main keygroup hey
musical mapping to [

24

 [[1,1],[1,1]]
,[[1,2],[1,2]]
,[[1,3],[1,3]]
,[[1,4],[1,4]]
,[[1,5],[1,5]]
,[[1,6],[1,6]]
,[[1,7],[1,7]]
,[[1,8],[1,8]]
,[[1,9],[1,9]]
,[[1,10],[1,10]]
,[[1,11],[1,11]]
,[[1,12],[1,12]]
,[[1,13],[1,13]]
,[[1,14],[1,14]]
,[[1,15],[1,15]]
,[[1,16],[1,16]]
,[[1,17],[1,17]]
,[[1,18],[1,18]]
] set

EXPLANATION: If the specified musical mapping consists of the empty
array [], then every key is mapped by default onto itself. Provided all 18
keys have been specified in the physical mapping, then the default musical
mapping is:

This recipe serves to illustrate a principle rather than be of practical use
in the context of pico 1.

Now the keys in rows 8 and 9 not only play notes, but also talk
Belcanto, because we’ve done nothing to detach them from their talker
agents. The recipes below are more useful in practice because they make
sure keys 9 and 18 don’t play music.

4.2 To silence the last 2 keys of main keygroup

main keygroup hey
musical mapping to [
 [[1,1],[1,1]]
,[[1,2],[1,2]]

25

,[[1,3],[1,3]]
,[[1,4],[1,4]]
,[[1,5],[1,5]]
,[[1,6],[1,6]]
,[[1,7],[1,7]]
,[[1,8],[1,8]]
,[[1,10],[1,9]]
,[[1,11],[1,10]]
,[[1,12],[1,11]]
,[[1,13],[1,12]]
,[[1,14],[1,13]]
,[[1,15],[1,14]]
,[[1,16],[1,15]]
,[[1,17],[1,16]]
] set

This rearranges the keys (by ID number) like this:

EXPLANATION: Notice that the first 8 lines of the musical mapping
are trivial, i.e. they replace key 1 by key 1, key 2 by key 2, and so on.
The first line that’s different is: [[1,10],[1,9]], which means: replace
key 10 by key 9. The remaining keys (10-16) are likewise shifted up by
one position. But what were key 9 and key 18 (in their old positions)
don’t get replaced by any key. So they stay silent.

That’s how pico 1 stops the last two keys (in row 9) playing music,
leaving them free to talk Belcanto, and so become Scroll Key 1 and 2.

4.3 To restore the original mapping of main keygroup

main keygroup hey
musical mapping to [
 [[1,1],[1,1]]
,[[1,2],[1,2]]
,[[1,3],[1,3]]
,[[1,4],[1,4]]
,[[1,5],[1,9]]
,[[1,6],[1,10]]
,[[1,7],[1,11]]

26

,[[1,8],[1,12]]
,[[1,10],[1,5]]
,[[1,11],[1,6]]
,[[1,12],[1,7]]
,[[1,13],[1,8]]
,[[1,14],[1,13]]
,[[1,15],[1,14]]
,[[1,16],[1,15]]
,[[1,17],[1,16]]
] set

To see how this works, refer to the explanation in recipe 4.2.

4.4 To zigzag the keys in main keygroup

main keygroup hey
musical mapping to [
 [[1,1],[1,1]]
,[[1,10],[1,2]]
,[[1,2],[1,3]]
,[[1,11],[1,4]]
,[[1,3],[1,5]]
,[[1,12],[1,6]]
,[[1,4],[1,7]]
,[[1,13],[1,8]]
,[[1,5],[1,9]]
,[[1,14],[1,10]]
,[[1,6],[1,11]]
,[[1,15],[1,12]]
,[[1,7],[1,13]]
,[[1,16],[1,14]]
,[[1,8],[1,15]]
,[[1,17],[1,16]]
] set

This rearranges the keys (by ID number) like this:

To see how this works, refer to the explanation in recipe 4.2.

27

4.5 To set a given block of keys to your own custom scale
Edit the text-only file: User Scales.txt in the folder:
/Users/yourname/Library/Eigenlabs/Scale Manager/
to add these lines to the bottom of the file:

[17-tone equal temperament]
; This is the 17-tone equal temperament scale
; Taken from:
; http://www.eigenlabs.com/wiki/Custom_Scales/
intervals=0 0.7059 1.4118 2.1177 2.8236 3.5295
4.2354 4.9413 5.6472 6.3531 7.0588 7.7649 8.4708
9.1767 9.8826 10.5885 11.2944 12

Recipe 1.6 shows you how to find the folder: /Library/Eigenlabs/
Note: the interval= line should be a single line with no line-break, but shown here
spilled over separate lines.
Note also: lines beginning with semicolon are comment lines, disregarded by EigenD.

Now (re)start EigenD. You now have a new custom scale called 17-tone
equal temperament., which you can use as instructed by the vendor.

The point of this recipe is to stress that the interval defining a note
can be fractional, and thus can be chosen to represent a note of any
desired pitch. The article: www.en.wikipedia.org/wiki/Note explains how
to calculate fractional intervals from frequencies given in Hz (cycles-per-
second), or from precise ratios of other notes as used in classical tuning
systems.

4.6 To find the interval to use in your own custom scale
Suppose cell: A1 contains whatever value we happen to know for the
note. Shown below are Microsoft Excel™ formulas for the numbers in
recipe 4.5.

Copy/paste whichever formula you need into any Excel™ cell:
(1) If A1 is note-frequency (Hz):

=9+12*LOG(A1/440,2)
(2) If A1 is frequency ratio with Concert Pitch, A440:

=9+12*LOG(A1,2)
(3) If A1 is frequency ratio with Concert Middle-C:

=12*LOG(A1,2)
(4) If A1 is the MIDI number (or MTS number):

=A1-60
(5) If A1 is the (fractional) octave above Concert Pitch, A440:

=9+12*A1
(6) If A1 is the (fractional) octave above Concert Middle-C:

=12*A1

28

(7) If A1 is the (fractional) semitones above Concert Pitch, A440:
=9+A1

(8) If A1 is the (fractional) semitones above Concert Middle-C:
=A1

(9) If A1 is the number of musical cents (¢) above Concert Pitch A440:
=9+(A1/100)

(10) If A1 is the number of musical cents (¢) above Concert Middle-C:
=A1/100

EXAMPLE 1: In recipe 4.5 we know the first interval precisely: it is a
fractional octave (one-seventeenth) above Concert Middle-C. Therefore
we use (6), fractional octave, replacing A1 by (1/17) to give:

=12*A1
=12*(1/17)
0.7059

Successive notes of the scale then go up by this value: 0.7059, until we
reach 12 semitones (= 1 octave), viz.

0.7059 + 0.7059 = 1.4118
0.7059 + 0.7059 + 0.7059 = 2.1177
0.7059 + 0.7059 + 0.7059 + 0.7059 = 2.8236
...

EXAMPLE 2: Suppose we want a scale based not on A440 but on
Scientific Middle-C. We know its exact frequency: 256 Hz. So we use (1),
note-frequency, replacing A1 by 256 to give:

=9+12*LOG(A1/440,2)
=9+12*LOG(256/440,2)
-0.3763

Successive notes of the scale then go up by 1, as usual for a well-
tempered 12-tone scale, viz.

-0.3763 + 1 = 0.6237
-0.3763 + 1 + 1 = 1.6237
-0.3763 + 1 + 1 + 1 = 2.6237
...

4.7 To reverse the note sequence of the chromatic scale
Edit the text-only file: User Scales.txt in the folder:
/Users/yourname/Library/Eigenlabs/Scale Manager/
to add these lines to the bottom of the file:

[Reverse Chromatic]
intervals=12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3

29

Now (re)start EigenD. You now have a new custom scale called Reverse
Chromatic that makes the 16 music keys of factory setup pico 1 play
chromatic notes in descending order.

This recipe is offered as the basis for allocating notes taken from the
chromatic scale to keys in any order you like, without redefining the
musical mapping. It’s best to have precisely 16 numbers in your custom scale,
to take control of the 16 music keys of pico 1. To achieve that, this
recipe uses intervals that descend past 0 into negative numbers.

EXPLANATION: A user scale can have any number of intervals (the
scale Monotone has just one, viz. 0). The notes so defined are allocated to
the (mapped) keys repeatedly in a cycle, which may interact unexpectedly
with an arbitrary sequence of notes. Having precisely 16 defined notes
prevents this cycling behavior and allows you to match notes to keys one-
to-one.

5 Setting the lights on buttons and keys

5.1 To color the octave-down button green
The octave-down button is the lower of the two octave buttons in this figure:

octave talker hey key 1 colour to 1 set

WARNING: Note the mandatory British spelling: colour for: color.

EXPLANATION: In factory setup pico 1 the octave-down button is
governed by key 1 of octave talker. This is all you need to know in
order to alter its color. The talker itself is responsible not only for
determining what Belcanto gets “talked” when the octave-down button is
pressed, but also which physical key corresponds to key 1, plus its
(default) light setting.

5.2 To toggle the action of the octave-down button
Create two files with the contents shown, and place them in the folder:
/Users/yourname/Library/Eigenlabs/Scripts/

Their filenames are immaterial, but to help you identify them later, name them as shown.
WARNING: Note the mandatory British spelling: colour for: color.

Text-only file: toggle_octave_0.txt

name
 toggle octave 0
description
 Toggles the octave-down button (key 1)
script
 # do desired function here
main keygroup hey octave up
 # Change the key color to confirm its mode
octave talker hey key 1 colour to 2 set
 # make key 1 action 1 execute the other script
octave talker hey 1 called 1 cancel
octave talker hey
 " interpreter 1 hey toggle octave 1 execute "
 when 1 called 1 do
octave talker hey re do

32

Text-only file: toggle_octave_1.txt

name
 toggle octave 1
description
 Toggles the octave-down button (key 1)
script
 # do desired function here
main keygroup hey octave down
 # Change the key color to confirm its mode
octave talker hey key 1 colour to 1 set
 # make key 1 action 1 execute the other script
octave talker hey 1 called 1 cancel
octave talker hey
 " interpreter 1 hey toggle octave 0 execute "
 when 1 called 1 do
octave talker hey re do

Where the 2 files differ, we’ve made the words or digits bold+underlined.
Load factory setup pico 1, and enable this adjustment by typing into
EigenCommander:

interpreter 1 hey toggle octave 1 execute

Alternatively you can use EigenBrowser to execute one or other of the two scripts.
If you now press the octave-down button, it changes color to green and
transposes the scale down an octave. If you press it again, the button
changes color to red and transposes the scale back up an octave.

EXPLANATION: Each script performs the opposite function. Each
also re-programs the octave-down button to execute the other script. Note
the need for: re do as the last phrase to execute, as recipe 6.4 explains.
And how to change the color of key 1 is explained in recipe 5.1.

This pair of scripts can be adapted to toggle the behavior of any key
or button. And in this case, it frees-up the octave-up button for a different
use, e.g. to execute some other script.

5.3 To set the tonic keys of cello rig 1 to green
Start with factory setup pico 1.

cello rig 1 gateway hey
 input called light 1 create
cello rig 1 scaler 1 light output
 to cello rig 1 gateway light 1 connect
cello rig 1 light 1
 to main keygroup keygroup output 6 light input
 connect

33

Other rigs can be treated similarly.

EXPLANATION: the scaler agent has the built-in ability to identify the
tonic keys and make the right light output pattern. It just needs
hooking up to the instrument keys correctly (via main keygroup here).

5.4 To make the metronome button flash with the beat

metronome hey beat flash persistence to 100 set

Experiment with different values in place of 100.

The value 1 causes a very brief flash, which doesn’t perceptibly lengthen until 50.
The value 450 is just long enough in pico 1 to make successive flashes run together.
The value 0 turns off the flash altogether.

6 Creating talkers and setting their actions

6.1 To see the Belcanto in octave talker
Every talker links a set of key-presses to actions, which are (compiled)
Belcanto phrases. So when you press a key, it “talks” Belcanto.

To see what phrases are “talked” by e.g. octave talker in factory
setup pico 1, make sure EigenBrowser is running, then enter this phrase
into EigenCommander (recipe 1.4 shows how):

octave talker phrase browse

You’ll see the following Belcanto phrases appear in EigenBrowser:

main keygroup hey octave down
main keygroup octave up

ASIDE: The second phrase could just as well have been,
and should have been, for consistency:

main keygroup hey octave up

6.2 To create a talker named test talker

talker create
it to test talker name ify

Read: name ify as: “nameify”, i.e. give the agent a new name.

EXPLANATION: If you simply execute talker create, the talker you
create gets given the name: talker 1. If talker 1 already exists, it gets
given the name: talker 2. And so on.

Rather than take a guess at what the name is going to be, it’s best to
give the talker your own choice of name, e.g. test talker. The noun:
it refers to the last agent created, without having to name it explicitly.

6.3 To make test talker talk a Belcanto phrase

test talker hey 3 called 2 cancel
test talker hey
" metronome hey toggle start " when 3 called 2 do

36

As we see in recipe 6.1 the purpose of a talker is to “talk” Belcanto
whenever a given key is pressed. But you don’t need a separate talker for
each key: the same talker can govern several keys, each talking a different
Belcanto phrase (called the action). Moreover a given key can have not
just one but an unlimited number of actions, done one after the other.

Why is there a need for one key to be able to have more than one
action, when any sequence of Belcanto phrases can be strung together into
a single action? To allow actions to be added and deleted independently of
each other.

The upshot is: when telling test talker what action to take (or
“talk”), you need to specify both a key ID number and an action ID number.
Usually a talker has keys numbered 1, 2, 3, ... and each key has actions
numbered 1, 2, 3 (rarely more). But the numbers don’t have to be con-
secutive. Thus key 2 can have an action 2 without it having an
action 1, or there being a key 1. So:

" metronome hey toggle start " when 3 called 2 do

means: let action 2 be: metronome hey toggle start – and let it be
done whenever key 3 is pressed.

Why is the metronome phrase put in quotes: " ... " ? Because it is not
Belcanto to be executed here-and-now, but a string of (Belcanto) words
for attachment to action 2. This string will not be executed as Belcanto
until later, when key 3 is pressed.

Note that the quotes are themselves Belcanto words. So it is good to
surround them with whitespace.

You can also use single-quotes. That allows you to define a string inside a string.
Why start with: test talker hey 3 called 2 cancel ? The

recipe will probably work without it. But to avoid mis-compilation it’s
wise to delete any action 2 which happens to be there already.

Which key is key 3? You’ll need to set it to a physical key (e.g. row 3
of column 2) like this:

test talker hey
 key 1 key column to 2 set
test talker hey
 key 1 key row to 3 set

6.4 To recompile the actions in test talker

test talker hey re do

37

On its own, re do recompiles the actions in all talkers in the current setup.

Why might you ever want to do this? To fix a talker’s misbehavior.
A talker’s action isn’t just a string of Belcanto. It’s compiled whenever

the action is created or altered. Sometimes during experiments, compil-
ation can get out-of-step: a given key doesn’t perform the action that
EigenBrowser says it should (see recipe 6.1).

Sometimes you know from experience you’re going to fool the Bel-
canto interpreter. In that case, execute: re do at the end of your action or
script.

7 Filtering audio and recording sounds

7.1 To record the sound produced by the Eigenharp
Start recording:

audio hey recorder set

Stop recording:

audio hey recorder un set

This writes a sound file named audio.wav in the folder:
/Users/yourname/Library/Eigenlabs/2.0.74-stable/Audio/

Replace yourname with your own user name, and if you are running a different version
of EigenD replace 2.0.74 with the version of EigenD you are running.

If audio.wav is already there, it is overwritten. So if you want to keep
the recording you’ve just made, then move audio.wav out of its folder.
Alternatively, rename it, or duplicate it.

7.2 To silence and restore the audio signal
audio hey mute

audio hey un mute

Used in conjunction with recipe 7.1 the first phrase silences the audio
signal but does not stop the sound file being written. These two phrases
used in succession will introduce a period of silence into audio.wav
without disrupting the timing.

7.3 To coarsen or refine the sound recording
audio hey sample rate to 44100 set

audio hey sample rate to 48000 set

audio hey sample rate to 96000 set

Each of these phrases redefines the internal sampling rate: the choice
being between 44.1 kHz, 48 kHz and 96 kHz. This governs the size of
the sound file created by recipe 7.1.

The factory setup pico 1 starts with a sample rate of 44100, at
which rate 10 seconds of recording makes audio.wav a stereo file of

40

3.5 MB. Setting sample rate to 48000 makes audio.wav 3.9 MB, and
setting sample rate to 96000 makes audio.wav twice the size: 7.8 MB.

7.4 To calculate the expected size of a sound recording
Use this formula for the size of audio.wav created by recipe 7.1:
 (file size) = (duration) × (channels) × (sample rate) × (sample size)

• duration (seconds)
• channels = 1 (mono) or 2 (stereo)
• sample rate = 44100, 48000 or 96000 (samples-per-second)
• sample size = 4 bytes (most audio software uses 4-byte samples).
= 10 * 2 * 44100 * 4

This is code suitable for Microsoft™ Excel or (without: =) into Apple® Spotlight.
= 3,528,000 bytes (or 3.5 MB).

Appendix A: Glossary of technical terms

This is an alphabetical glossary of terms used in the foregoing chapters,
which may be unfamiliar to the non-technical reader. All such terms are
formatted in the narrative like this: agent. This tells you that an explanat-
ion of the term can be found below.

About Window: the banner window that appears when you click the
mandatory menu item in all Macintosh apps: About [App-name]...

Contains essential information about the version/release of the app
that is running. Essential for recipe 1.5.

Action: one of a choice of Belcanto phrases executed by a given talker
when certain keys or buttons are pressed. Every action has an ID number,
viz. action 1, action 2, etc.

Agent: a component of EigenD. Agents are responsible for all the
functionality of EigenD. Individual agents may be supplied by the vendor
(www.eigenlabs.com) or by some third-party. You can write your own.

App, Application: a program or suite of programs running on the
Apple® Macintosh™ that is not part of MacOS itself. Usually a 3rd-party
vendor program, or even one written by the user. EigenD is an app, but
EigenCommander and EigenBrowser aren’t, or shouldn’t be, even though
they’re written to look and feel like apps.

ASCII (American Standard Code for Information Interchange): the
oldest, most primitive digital character encoding, still employed by all
personal computers.
Its importance to this Cookbook is that Belcanto is written using only
ASCII characters. A Belcanto script is a text-only file of the simplest sort.
Non-USA users should be warned that ASCII contains the 26 Latin
letters in both upper and lower case: A-Z and a-z, but no accented or
national characters such as: é æ ø å. It contains $ but no other currency
symbol, not even £.
The printable ASCII characters are:

!"#$%&'()*+,./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
`abcdefghijklmnopqrstuvwxyz{|}~

42

We must stress that these are the only characters (apart from whitespace)
that can appear in a script.
ASCII existed long before computers were invented. Originally it was a
teleprinter coding standard, and therefore provides some historical (non-
printing) byte-codes for controlling the teleprinter itself, even including
ringing the bell! Some byte-codes are still in use by personal computers,
notably Null (NUL), Linend (LF) and Carriage Return (CR).
Present-day computer platforms also support a multi-byte standard called
Unicode, of which ASCII has been reduced to a subset, albeit a privileg-
ed one (viz. as the first 128 numeric character-codes, the so-called code
points).

Belcanto Interpreter: an agent that is responsible for compiling and
executing Belcanto code.

Comment: a line in a script which the Belcanto Interpreter ignores. It serves
only to convey some message to the programmer or musician.
Comments in a script must begin with the character: #

Context-dependent: Lacking the property of being context-free, often
conspicuously so.

Context-free: used to describe a computer language in which a statement
is either valid or invalid, independently of the context, i.e. what has
already taken place. Belcanto is NOT context-free, not even for
determining valid syntax.

Custom scale: a musical scale defined by the user, extending the set of
scales available for the Eigenharp. See recipes 4.5 and 4.6.

Dock: a bar of application icons at the bottom of the Macintosh screen
for launching frequently-used programs (apps).

EigenBrowser: an agent that displays a dynamic menu on the computer
screen, letting you select and load sounds and loops, and run both factory
and user-written scripts. To help you adjust the Eigenharp on-stage, you
can control the menu contents, and pick a desired menu item by using
the instrument keys alone.

43

EigenCommander: an agent that displays a session record on the
computer screen, letting you type-in a Belcanto phrase and see the (error)
response if it is not executed.

EigenD: the software that drives the Eigenharp. A given release of
EigenD serves all Eigenharp models.

Extension: the last part of a period-separated filename. Thus suppose a
file is named: My.txt.only.script.txt – the last part (and only that
part): txt is the extension. Some programmers don’t consider the
extension as part of the filename proper. MacOS even has a user option
to hide it in Finder windows.

The extension is essential under Windows for determining the type
and ownership of any given file. It is not essential on the Macintosh,
which has its own hidden way of recognizing the type of a file, but
MacOS is gradually coming to accept the extension as overriding its own
type-mechanism.

In practice, appending the extension: txt to the name of a text-only file
signals to both system and user that it is an appropriate container for a
Belcanto script. However the extension: txt is not mandatory for a script,
nor is any other extension. This is an idiosyncratic state-of-affairs, with
many subtle consequences for the Macintosh user.

Factory setup: one of a number of setups distributed with EigenD. Some
are experimental, being offered as a basis for writing your own setups.
Others are standard setups. The vendor offers these for immediate on-stage
use, having extensively developed them for the purpose. However these
too can be used as a basis for your own setups.

Filename: the name by which the computer platform (MacOS or
Windows™) knows a given file. A Belcanto script has a filename, but it
can also have a Belcanto name that is different. See: Name, Extension.

Header: the leading section in a script that describes what it does. This is
mandatory, even though it is not executed by the Belcanto interpreter. It
starts with the word: name or description and finishes with the word
script. Unlike Belcanto itself, whitespace does matter in the header. In
particular, name, description and script each needs a line to itself.

name
 test name
description

44

 This section describes what the script does,
 viz it starts/stops the metronome.
script
 metronome hey
 toggle start

The name section is needed if you want to execute the script using a
Belcanto phrase. The name needs to be a valid Belcanto noun (the
filename won’t do). You can then execute the script as follows:

interpreter 1 hey test name execute

The name section may be placed above or below description. Or it can
be omitted, e.g.

description
 This section describes what the script does,
 viz it starts/stops the metronome.
script
 metronome hey
 toggle start

ID number: a single number used to identify keys, agents and actions.

Menubar: a bar at the top of the MacOS screen, containing menus for
interacting with a given application, specifically EigenD.

Unlike Microsoft Windows™, MacOS shows only one menubar at a
time, and that belongs to the application that has one of its window
currently selected.

Because of how EigenD is written, it is a user-unfriendly task getting
the correct menubar to appear in order to save a setup, say, or launch a
daughter app. You must get in the habit of first automatically clicking the
EigenD icon in the Dock, as opposed to one of the icons of the daughter
apps: Workbench, Stage, EigenCommander or EigenBrowser, which all look
identical.

MIDI (Musical Instrument Digital Interface): a popular electronic
musical instrument connectivity standard. EigenD does not use MIDI
itself, but can configure the Eigenharp to behave like a MIDI instrument,
e.g. for connection to Apple® GarageBand™.

45

MIDI number: a specification of precise musical pitch agreed to by the
MIDI Manufacturers Association in the MIDI protocol. Also known as
the MIDI Tuning Standard (MTS).
See: www.en.wikipedia.org/wiki/MIDI_Tuning_Standard
Sample MIDI numbers:

• Concert Pitch A440: 69
• G below Concert Pitch A440: 67
• Concert Middle-C (261.6255653 Hz): 60
• Perfect 5th above Concert Middle-C: 67.01955001
• Scientific Middle-C (256 Hz): 59.62368344

MTS number: see: MIDI number.

Musical mapping: a user-specifiable rearrangement of the keys within a
block (defined by some given physical mapping). With the Pico, all key
arrangements are governed by some choice of musical mapping, not physical
mapping. See recipes 4.1 to 4.4.

NotePad: a Microsoft™ utility which provides the prime means under
Windows™ of creating and editing text-only files. See also: TextEdit.

Noun: a word in Belcanto, or string of words, denoting an object as
opposed to a verb, e.g.

all
octave talker
key 9
keygroup 1

Octave buttons: two buttons on the Pico which are used in the factory
setup pico 1 to transpose up/down by one octave.

There is nothing built-into the physical Pico instrument which says they
must be used to transpose the key by an octave. This behavior is simply
part of the factory setup pico 1. To Belcanto, and to Workbench, these two
buttons are “keys” in a notional “column 3”, numbered 3 and 4. You use

46

these numbers to identify the physical key to perform an action when
creating a keygroup agent.

Octave-down button: the Pico octave button adjacent to the strip control.
Can be addressed as the “key” at column 3 row 3.

Octave-up button: the Pico octave button placed centrally. Can be
addressed as the “key” at column 3 row 4.

Octave factor: a fraction which specifies a musical interval in terms of
what proportion of an octave it represents. See recipe 3.2 for a table of
octave factors.

Open-source: freely available software guaranteed to contain no
proprietary component, maintained cooperatively by volunteers as part of
a web-based group.

See: http://en.wikipedia.org/wiki/Open-source_software

Phrase: a valid piece of Belcanto code, which works on its own in
EigenCommander. Sometimes used to mean a single line of a script (but see
below: whitespace).

A phrase must always end with a verb, for example: hey as in:

metronome hey

Physical mapping: a user-specifiable mapping of the keys of the
physical instrument to divide them into blocks for different purposes.
Typically the Pico is not divided into blocks in this way, so only one
physical mapping is ever used. See: musical mapping.

Pouf: to pouf an icon is to remove it permanently from the MacOS Dock.
So-called because dragging/dropping an icon sufficiently far away from
the Dock causes it to disappear with a “pouf”-sound in a puff of smoke.

Script: a text-only file of Belcanto, together with a descriptive header. For a
sample script, see: Header.

Setup: a file, or collection of files, recording the overall internal status of
EigenD at the time the setup was saved.

A given setup has a name (must be in Belcanto syntax) e.g. user 9

47

EigenD shows you a list of the setup names it knows about, for the
purpose of re-loading to restore the desired internal status. These include
a number of factory setups distributed with EigenD. See: Standard setup.

The term setup is also used loosely to mean the internal state of EigenD
at any given instant, regardless of the (named) setup having been saved
(or updated). Executing a Belcanto phrase alters the current setup, as thus
understood. So does the use of Stage and/or Workbench to create, config-
ure and connect agents.

Spotlight: a MacOS utility, activated by ⌘spacebar, which explains
technical terms, searches for files by name or content, or calculates
expressions (see recipe 7.4) such as:

10 * 2 * 44100 * 4
3528000

Stage: a program distributed with EigenD that lets you control the
Eigenharp on-stage by means of buttons and dials shown on the
computer screen. Stage can run on a remote computer, e.g. MacBook™
or iPad™, connecting to EigenD by means of HTML.

Standard setup: one of a number of factory setups distributed with EigenD.
Most of them are appropriate only for one model of Eigenharp, Alpha,
Tau or Pico. Pico owners seem to feel the greatest need to customize
their instrument, so the examples in this Cookbook are primarily
addressed to them. So the main standard setups used in this Cookbook
are pico 1 and blank.

Talk: the action of a talker when one of its associated keys or buttons are
pressed.

Talker: an EigenD agent whose main purpose is to execute a given Bel-
canto phrase, or series of phrases (the talker’s actions) when some key or
button is pressed on the Eigenharp. A talker also governs the lights on its
associated keys.

TextEdit: a Macintosh™ utility which provides the prime means under
MacOS of creating and editing text-only files. See also: NotePad.

Text-only file: a data file of the most elementary sort, invented at the
dawn of the (IBM) personal computer. Its name has extension: .txt and

48

it consists solely of ASCII characters, which may or may not contain
whitespace characters.

Text-only files are created and altered (“edited”) on the MacOS
platform by the utility: TextEdit, and on MS Windows™ platforms by
the utility: NotePad.

Treeview: a data display in a branching form, allowing branches to be
hidden or revealed.

Sample treeview display:

Unicode: a collection of related standards developed and maintained by
www.unicode.org for representing the graphemes of all the world’s
writing systems as multi-byte “code points” (loosely: “characters”). One
standard in particular, utf-8, is now well-supported by most computer
systems and apps. It permits an otherwise conventional text-only file to
contain non-ASCII characters. See: ASCII.

A utf-8 character may appear in the header of a script, but Belcanto
syntax is ASCII-only and cannot validly contain unicode characters.

This has implications for the use of extended-Latin characters in
European languages, e.g. æ å ø á ñ, plus some currency signs. Thus $ is
an ASCII character, but ¢ (also used for musical cents) is not.

Unix: a venerable yet still popular computer operating system. MacOS is
built as a layer on top of Unix, and any Macintosh computer can be
operated via a Unix session provided by Terminal.app. Windows™ has
no built-in support for Unix.

User setup: a setup created and saved by the Eigenharp user. EigenD
keeps user setups at arms-length from factory setups.

Verb: an activity word in Belcanto, e.g. connect hey set start

49

Version folder: a folder of system files specific to a given version of
EigenD. For version 2.0.74 this folder is named:
/Applications/Eigenlabs/2.0.74-stable/.

Whitespace: refers to those non-print ASCII characters which are there
to control the original teletype, or in present-day terms, to format the
code layout. For example, the unseen character(s) known to
programmers as carriage return (0x0D) and linend (0x10)), that you make by
pressing the Return key.

The Belcanto interpreter treats all whitespace characters as if they were
the space character (0x20) which you make by pressing the Spacebar. The
space character itself is not a word as such. It only separates words. It
does not have a representation as musical notes. However carriage return
and linend do matter when creating comments (serving to terminate a
comment), and also when creating the header in a script.

Word: a lexical unit, or token, of Belcanto syntax, e.g. connect hey
set start un.

These punctuation marks are individual words: " ' , - . ` also
the digits: 0 1 2 3 4 5 6 7 8 9. Apart from these, all words must be
one of 700 or so in the dictionary that EigenCommander shows you. Every
word in the dictionary has a representation as a sequence of musical note
(which EigenCommander also shows you), or informally as note-numbers, 1
to 8.

Every word is separated from the next word by one or more whitespace
characters. The only exception to this rule are those words consisting of
punctuation or digits, which the Belcanto interpreter knows how to
separate, and combine again. Thus the number in recipe 3.2 i.e. 0.5 is
strictly not a single word but three, viz. 0 . 5

Workbench: an agent that lets you view and modify the current EigenD
setup as a collection of boxes (one for each agent) and cable connections.
Use of Workbench creates, connects and configures agents. The EigenD
program itself can then be used to save this internal status as a (Belcanto-
named, reloadable) setup.

Appendix B: Selected Language Reference

This is a list of selected Belcanto words. We haven’t shown them all here
(there are over 700), just the main ones, especially those that may not be
obvious to the beginner. Thus a Belcanto word like octave needs no
explanation to a musician, whereas ify and un might well do so.

EigenCommander shows a list of all such words, along with their repre-
sentation as “musical notes” to be used when entering Belcanto via the
physical instrument keyboard.

Starts a comment in a script.
A comment must have a whole line to itself.
(But # can be preceded by whitespace.)

Include keygroup 1 in the present conversation
keygroup 1 listen

add
Creates an additional attribute of an existing agent.
See example in: key.

all
Used to refer to all agents, or all instances of a given agent.
See: join.

called
Refers to an attribute of an agent by its ID number.

octave talker hey 1 called 1 cancel

cancel
Removes an action from a talker agent.

octave talker hey 1 called 1 cancel

52

column
(With: row) specifies the location of a key identified by an ID number.

test talker hey
 key 1 key column to 2 set
test talker hey
 key 1 key row to 3 set

See also: row.

connect
Connects the output of a given agent to the input of another given agent.

player key to sampler rig 3 key connect

create
Creates a given type of agent.

player create

The agent so created will have the name: player 1 (or the next unused
number). To give it your own choice of name, e.g. note player, use:
name ify.

empty
See: join.

from
Noise-word used to separate nouns in a Belcanto phrase.

player key from sampler rig 3 key un connect

hey
Used to start a conversation with a single named agent.

metronome hey

53

If you want to start a conversation with several agents at once, then use
the verb: listen.

ify
Used to make a verb out of a noun.

talker create
it to octave talker 1 name ify

it
Refers to the just-created agent just created, usually in order to give it your
own choice of name.
See also: ify.

join
Includes agents in a conversation.
To start a new conversation with all agents:

all join

To start a new conversation with no agents (agents will subsequently be
added using: listen):

empty join

key (formerly: k)
Stands for a given key on the physical keyboard.
Must be followed by a single ID number.
(Specify which physical key you mean by using: row and column.)

output 1 create
 output 1 choose
 key 1 add
 key 2 add

Example (used with all):

all scaler hey
all key bend range to 2 set

54

keygroup (formerly: kgroup)
An agent that controls the behavior of a subset of keys.

listen
Recruit several agents one-at-a-time into a conversation.

empty join
keygroup 1 listen
keygroup 2 listen

See also: hey.

row
See: column.

set
Assigns a value to the attribute of a given agent.

octave talker hey key 1 colour to 1 set

all scaler hey
all key bend range to 2 set

to
Noise-word used to separate 2 nouns.

player pressure to sampler rig 3 pressure connect

C/f: from.

un
Used in front of a verb to negate an action, e.g. to disconnect a connection.

player key from sampler rig 3 key un connect

55

when
Used in a phrase to link an action to a talker agent key.

octave talker hey
 " main keygroup hey octave by 0.5 down "
 when 1 called 1 do

